
[11] Paul Feautrier, Parametric Integer Programming, 
Laboratoire MASI, Institut Blaise Pascal, Universite de 
Versailles St-Quentin, 1988. 
[12] A.M. Sergienko, VHDL for calculation devices design, 
“Korneichuk”, “TID DS” ltd, 2003. 
[13] http://llvm.org/ 
[14] http://gcc.gnu.org/ 
[15] G. Aigner, A. Diwan, D. Heine, M. Lam, D. Moorey, B. 
Murphy, C. Sapuntzakis, The SUIF Program Representation. 

[16] D. Boulytchev, Processor Architecture Description
Language, Institute for Information Technologies, 2002. 
http://oops.tepkom.ru/papers.html 
[17] Pioneer Chooses Mentor Graphics Catapult C Synthesis 
Tool for R&D of Digital Signal Processing Applications 
http://www.embedded-
computing.com/news/Contracts/2908 

The System for Automated Program Testing

Steinberg B., Alimova E., Baglij A., Morilev R., Nis Z., Petrenko V., Steinberg R. 
Southern Federal University, 105, B. Sadovaya st., Rostov-on-Don, 344006, Russia,

mob. phone: +79185090514
E-mail: steinb@ns.math.rsu.ru

Abstract

The paper focuses on automated white-box and black-
box testing of programs. The black-box testing tool has
automated input data generator and the subsystem of
output data comparison. The described tool can be
applied to the testing of portability and scalability of
parallel programs. The attention is given to aspect of
syntax analyzer testing as a part of developed tool for
white-box testing. The syntax analyzer testing process, 
proposed in this paper, is based on all significant
language sequences deduction from formal grammar
specification.

1. Introduction

The system for automated program testing is presented 
in this paper. 

At present, graphical interface and web-applications 
[1] automatic testing tools are popular. Paper [2] is 
dedicated to the problems of complex software systems. 
Strategies, planning, resources needs for testing complex 
software are considered also.   

The testing tool includes random input data generator, 
running programs using random input data subsystem, 
checking results equivalence subsystem and testing 
results output subsystem. This tool allows testing 
calculation modules using “black box” approach [3]. 
Special tools are used to test program using “white box” 
approach [3]. Those tools allow controlling the coverage 

of program branches by set of tests. This tools software 
system could be used if 
• testing program has test presented as the pair 

<input data files set, corresponding output data 
files set>; 

• template program is given (for example, to test 
parallel program we have template sequential 
program); 

• it is needed to test the program on a different 
computing systems (for example, 4 nodes cluster 
and 16 nodes cluster and we need to test 
scalability and compatibility). 

2. Testing using «Black box» approach 

This software tool is designed to automate the black 
box testing of the computational modules that are part of 
the high-performance software complex. The «black box 
testing» term means a lack of access to a source code of 
the tested program, and the lack of understanding of its 
internal structure. 

The test system sequentially executes the tested 
program with different input data and on different 
configurations of the computing system. At the end of 
each run the test system automatically evaluates the 
success of the test. The report file is generated as a result 
of the execution of all required tests. 

The input data files for the tested programs are 
generated automatically by their description. The random 
number generator from the standard C library is used to 
generate the data. 

218 IEEE EWDTS, Moscow, Russia, September 18-21, 2009



In this system the following restrictions on the testing 
program were adopted: 

• The program is not interactive, i.e. it does not 
contain a graphical user interface and does not 
read data from the console. 

• The program works with predefined input and 
output files in a fixed format. 

Test system is configured using a configuration file, 
which describes the following information: 
• Execution configurations of tested programs. 
• Input and output data formats of tested programs. 
• The test cases. 
Execution configuration means a configuration of 

computational systems, which will run the test program. 
The test system is able to run the testing program on a 
multiprocessor system (using OpenMP), and on a cluster 
of multiprocessor nodes (using MPI + OpenMP).  

Input and output data of the tested programs are 
described in a special format called IODataDescription. 
This XML-description can be created using any text 
editor as well as specially developed for this system 
IODataDesriptionEditor editor. IODataDescription 
format is used in the IODataTuner library. With the help 
of this library the test system gets the following features: 
• Generating of input files with random data by a 

format description. 
• Checking the correctness (consistency with 

description) of the input/output data files. 
• Checking the equivalence of the two files with the 

output data in terms of description. For example: if 
one file contains the real number 3.1415, and the 
second one - 3.1414, while the description 
specifies the accuracy of 0.001, these data are 
considered equal, and the files they contain - as 
equivalent. 

Test case is determined by a combination of the 
execution configuration, the input data set and the 
success conditions. The test is considered successful if 
and only if all its success conditions are met. The test 
system supports the following conditions: 
• The program must return a zero return code. 
• After the completion of test program an output 

files must be saved to disk. 
• The output data must be consistent with their 

description and must be equivalent while running 
on different configurations. 

Automation of testing by the “white box” principle.
Program system, described above, which is intended 

for automation of program modules testing by the “black 
box” principle, is extended to the system for testing by 
the “white box” principle. This extension is based on the 
internal representation of programs [6], which is used in 
Open parallelizing system (OPS) [4], [5] and on a work 

with a program control flow graph. This extension is 
developed for programs written in C and FORTRAN 
languages. 

Coverage of control flow is used as a criterion of 
completeness of testing in this work. Registration of 
program passing through the edges of control flow graph 
is needed for use of this criterion [7, p258]. Special 
operators (registrators) may be placed into program 
locations, which correspond to control flow graph edges, 
for automation of such registration. Addition of 
registrators into program text increases program 
execution time. It is enough to place this registrators not 
on all edges, but on some subset. Algorithm for finding 
such minimal subset of edges is described in [8]. This 
algorithm is implemented as a program in the context of 
the given project. 

Figure 1. A set of control
edges on the Flow Control

Graph for the program
fragment is highlighted

3. Automatic test generation for syntax
analyzer

The automatic tests generator for the parser [9] has 
been developed. Tests are aimed to prove implementation 
correctness of following aspects: 
• the parser under test accepts all strings of target 

language (completeness); 

IEEE EWDTS, Moscow, Russia, September 18-21, 2009 219



• syntax error detection capability (recognition 
correctness). 

The language, which needs to be parsed, represented 
as a formal grammar description [10] in EBNF (Extended 
Backus–Naur Form). This description is given to the 
generator as an input data. Dependency graph of 
nonterminal symbols (fig.1) is built by formal grammar 
description automatically. The graph nodes represent 
nonterminal symbols. The graph edges depict the 
dependencies of the symbols according the input 
grammar rules. 

Figure 2. The nonterminal
symbols dependency graph 

(the figure illustrates the
simplified formal grammar of 

C-language)

The set of non-terminal pairs is built as the result of 
full enumeration process: 

C = {(Ni , N j )}, , i j =1, n , where n is the total 
 amount of nonterminal symbols.    (1) 

By using the non-terminal dependency graph it is 
possible to determine whether nonterminal N j  can be 

deducted from Ni . The deducibility is determined 
sequential for each pair from set C. If the pair is 
deductable, the string 
s = S →�→ Ni →�→ N j →�T , where S – the start 
symbol, T – terminal symbols, is produced. It is 
guaranteed that each string s belongs to the target 
language by using of that algorithm and each nonterminal 
from set C presents in the set of generated strings. 

The test set completeness criteria is occurrence of 
string derived for each pair of nonterminals in set C. 

4. References

[1] P. Mozhaev, “Automatic testing tools”, Open Systems, 
2009, №3. 
[2] V. V. Lipaev, Testing of complex software systems for
demands suitability, IPZ “Globus”, Moscow, 2008. 
[3] G. Mayers, Art of software testing, Finances and Statistics, 
Moscow, 1982. 
[4] Open Paralellizing System. www.ops.rsu.ru 
[5] B. J. Steinberg, “Open Parallelizing System 2007 and 
Interactive Program Parallelizing”, Proceedings of the IEEE
EAST-WEST DESIGN & TEST INTERNATIONAL
SYMPOSIUM (EWDTS’07), Yerevan, Armenia on 7-10 
September 2007. 
[6] V.V. Petrenko,  “Internal representation Reprise for 
parallelizing system”, IV international conference “Parallel
computations and control problems” PACO’2008, Moscow: 
October, 2008. 
[7] V. A. Evstigneev, V. N. Kasiyanov, Using graphs in
programming: processing, visualization and applying, “BHV-
Petersburg”, 2003. 
[8] B. J. Steinberg, M.V. Naprasnikova, “Minimal set of control 
edges while testing program modules”, Isvestia of high-schools.
North-Caucasian region. Natural sciences, №4, 2003, p.15-18. 
[9] Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. 
Ullman, Compilers: Principles, Techniques, & Tools with
Gradiance, Addison Wesley, USA. 
[10] Michael A. Harrison. Introduction to Formal Language
Theory, Addison-Wesley, USA. 

220 IEEE EWDTS, Moscow, Russia, September 18-21, 2009


